

Complex Sender API
Quickstart Guide

• Authentication
• Creating an IP Pool
• Creating a Subaccount
• Subaccount Custom Bounce Domain
• Subaccount Authentication
• Subaccount Engagement Tracking
• Injection API
• SMTP
• Account Level Event Webhook
• Subaccount Event Webhook

Contents

Complex Sender API
Quickstart Guide

1

Welcome to SocketLabs!

SocketLabs’s Complex Sender product was built from the ground up with the
indirect sender use case in mind. If you send mail on behalf of others or need
intelligent mailstream separation, SocketLabs is the product for you!

API Features

• Integration is quick, lightweight, and can be done in one engineering sprint.
• Once initial integration steps are taken, the rest of the platform is optionally

codeless.
• SocketLabs was built API first: tasks you can do in the application can also be

done via API.

This guide provides overviews of the API calls you’ll need to authenticate and
perform a basic setup of your Complex Sender SocketLabs account. Ready? Let’s
get started!

Getting Started

No SocketLabs account? No problem! Click here to chat with our Sales team

https://www.socketlabs.com/pricing/#complex

Complex Sender API
Quickstart Guide

2

API Conventions

• The SocketLabs API follows REStful conventions
• Trailing slashes are ignored: /transmissions is equivalent to /transmissions/.
• URL paths, URL query parameter names, and JSON field names are case

insensitive.
• URL paths use lower case, with dashes separating words.
• Query parameters and JSON fields use camel casing for JSON field names.
• The HTTP status indicates whether an operation failed or succeeded, with extra

information included in the HTTP response body.
• All APIs return standard HTTP error code formats.
• Unexpected query parameters and request body fields are ignored.

Getting Started

Complex Sender API
Quickstart Guide

3

Creating an API Key

To get started with the SocketLabs API, you’ll first need to create an API key. This
can be done on the API Key Management page in the SocketLabs Performance
Dashboard.

It is important to keep your API key secure because it can be used to modify fea-
tures for your SocketLabs account.

Endpoints

All calls to the SocketLabs API need to start with the appropriate base URL:

Bearer Token

API calls to the SocketLabs API are authenticated using the API key that you gener-
ated. Authenticate your calls to the SocketLabs API using the Authorization header
with the Bearer authentication scheme. That should look like:

Authentication

https://api.socketlabs.com/

Authorization: Bearer YOUR-API-KEY

https://portal.socketlabs.com/x/smtp-api/key-manager

Complex Sender API
Quickstart Guide

4

Example Request

Authentication

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Get,

 “https://api.socketlabs.com/v2/ip-allocation?” +

 “pageNumber=0&pageSize=5&sortField=IpAddress&sortDirection=asc” +

 “&filters=IpAddress=like:10.28.100”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Now let’s go create an IP Pool.

Complex Sender API
Quickstart Guide

5

IP Pool Overview

IP Pools are how your subaccount mail gets routed. IP Pools are useful for helping
separate mail streams and managing throttling for warmup.

Endpoint

Attributes

Creating IP Pools

https://api.socketlabs.com/

Property Name Data Type Details

ipAssignmentIDs string Unique ID of each IP address to assign

name string IP Pool display name

Complex Sender API
Quickstart Guide

6

Get all IP Address Allocations

To create an IP Pool, you will need to know what IPs are available to be allocated to the
pool. The response from this request will be used to create the IP Pool.

Example Request

Creating IP Pools

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Get,

 “https://api.socketlabs.com/v2/ip-allocation?” +

 “pageNumber=0&pageSize=5&sortField=IpAddress&sortDirection=asc” +

 “&filters=IpAddress=like:10.28.100”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Let’s move on to creating new subaccounts.

Complex Sender API
Quickstart Guide

7

Subaccount Overview

Subaccounts are how you provision, manage, and report on senders separately.
Subaccounts are useful for any type of complex sender, whether you send on be-
half of others or want to otherwise separate various mail streams.

Endpoint

Attributes

One of the attributes below must be set to create a subaccount. If neither are set or both
attributes are set, the API call will fail.

Creating Subaccounts

https://api.socketlabs.com/subaccount

Property Name Data Type Details

name string Subaccount display name

ipPoolID number Unique ID of each IP address to assign

useRuleEngine boolean IP Pool display name

Complex Sender API
Quickstart Guide

8

Example Request with ‘useRuleEngine’ set

Creating Subaccounts

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 ‘name’: ‘Test Name’,

 ‘useRuleEngine’: true

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

9

Example Response with ‘useRuleEngine’ set

Creating Subaccounts

{

 “data”: {

 “subaccountId”: 12345,

 “accountId”: 98765,

 “name”: “My Subaccount”,

 “status”: “Active”,

 “createdOn”: “2022-01-01T07:00:00-05:00”,

 “streamScore”: 85,

 “dailyVolume”: 123456,

 “urgency”: “Low”,

 “hasDkim”: false,

 “hasSpf”: false,

 “useRuleEngine”: true,

 }

}

Complex Sender API
Quickstart Guide

10

Example Request with ‘ipPoolId’ set

Creating Subaccounts

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 ‘name’: ‘Test Name’,

 ‘useRuleEngine’: true

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

11

Example Response with ‘ipPoolId’ set

Creating Subaccounts

{

 “data”: {

 “subaccountId”: 12345,

 “accountId”: 98765,

 “name”: “My Subaccount”,

 “status”: “Active”,

 “createdOn”: “2022-01-01T07:00:00-05:00”,

 “streamScore”: 85,

 “dailyVolume”: 123456,

 “urgency”: “Low”,

 “hasDkim”: false,

 “hasSpf”: false,

 “assignedIpPool”: {

 “ipPoolId”: 12345,

 “accountId”: 98765,

 “name”: “My Ip Pool”,

 “status”: “Active”,

 “createdOn”: “2022-01-01T07:00:00-05:00”,

 “isDefault”: true,

 “streamScore”: 85,

 “dailyVolume”: 123456

 }

 }

}

After creating subaccounts, you’ll want security. First, we’ll start with custom bounce domain

setup to enable SPF.

Complex Sender API
Quickstart Guide

12

Bounce Domain

The Custom Bounce Domain is how SPF is implemented with SocketLabs.

Setup

Before you can set up a bounce domain with the API, that domain needs to exist and
have CNAME set up to point to tracking.socketlabs.com. You can re-use the CNAME re-
cord created for custom bounce domain to set up your engagement tracking domain.

Endpoint

Path Variables

• subaccountId (number, required)

Subaccount Custom Bounce
Domain Authentication

https://api.socketlabs.com/subaccount/:subaccountId/bounce

Complex Sender API
Quickstart Guide

13

Attributes

Subaccount Custom Bounce
Domain Authentication

Property Name Data Type Details

domain string Domain or subdomain you want to set up for
custom bounce domain handling.

isDefault boolean If this is set as the default, any mail that is sent
that does not match a custom bounce domain
in the account will fall back to using this domain.
If no defaults are set in your account, email-od.
com is used as the default value.

Complex Sender API
Quickstart Guide

14

Example Request

Subaccount Custom Bounce
Domain Authentication

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount/:subaccountID/bounce”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 “domain”: “do”,

 “isDefault”: true

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

15

Example Response with ‘useRuleEngine’ set

{

 “data”: {

 “domain”: “example.com”,

 “isDefault”: false,

 “validationResult”: “Success”,

 “createdOn”: “1950-07-03T00:39:30.153Z”,

 “updatedOn”: “2008-09-07T16:07:17.709Z”

 }

}

Subaccount Custom Bounce
Domain Authentication

You’ve got SPF enabled, so now it’s time to set up subaccount DKIM authentication.

Complex Sender API
Quickstart Guide

16

DKIM Overview

SocketLabs will sign outbound messages where the From address domain matches the
domain of one of your DKIM entries.

To create a new DKIM entry, please provide the domain, selector, and private key. We
will attempt to validate the private key that you provide against the public key for your
domain and selector. If we are unable to validate the public key, an error message will be
returned.

You can create your own private and public keys to use with this endpoint. If you would
prefer to have SocketLabs generate the key pairs for you, we provide a Generate end-
point that will generate a public/private key pair for your provided domain and selector
combination.

Options

DKIM entries can be set up by having SocketLabs generate a private and public key pair
or by providing SocketLabs directly with the public/private key pair. The private key must
exist on the domain you are setting up in order for it to pass validation.

Endpoint

https://api.socketlabs.com/subaccount/:subaccountId/dkim

Subaccount DKIM Authentication

Complex Sender API
Quickstart Guide

17

Path Variables

• subaccountId (number, required)

Generate a DKIM Key for a Subaccount

Attributes

Example Request

Property Name Data Type Details

domain string Domain or subdomain you want to set up for
your DKIM entry

selector string Selector for the DKIM record

Subaccount DKIM Authentication

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount/:subaccountID/dkim?do-

main=:domain&selector=:selector”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

18

Example Response

Subaccount DKIM Authentication

{

 “data”: {

 “DnsHostName”: “dkim1._domainkey.example.com”,

 “Domain”: “example.com”,

 “Selector”: “dkim1”,

 “DnsRecord”: “key”,

 “PublicKey”: “public key”,

 “PrivateKey”: “private key”

 }

}

Complex Sender API
Quickstart Guide

19

Providing SocketLabs directly with a DKIM key pair

If the privateKey is not provided, we will generate a new public/private key pair for you.
Otherwise, we will attempt to validate your private key against the public key for your
domain.

Attributes

• domain (string)
Domain or subdomain you want to set up for your DKIM entry

• privateKey (string)
• selector (string)

Subaccount DKIM Authentication

Complex Sender API
Quickstart Guide

20

Example Request

Subaccount DKIM Authentication

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount/:subaccountID/dkim?do-

main=:domain&selector=:selector”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 “domain”: “example.com”,

 “selector”: ”dkim”,

 ”privateKey”: ”abcdefghijklmnop1234567890”

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

21

Example Response

Subaccount DKIM Authentication

{

 “data”: {

 “Domain”: “example.com”,

 “Selector”: “dkim”,

 “truncatedPrivateKey”: “truncated private key...”,

 “recordType”: “TXT”,

 “createdOn”: “1901-01-01T01:01:01.000Z”,

 “updatedOn”: “1901-01-01T01:01:01.000Z”

 }

}

With the basics in place, you’ll move on to connecting your account to engagement tracking. This

reporting will give you insight into how recipients are interacting with your mail.

Complex Sender API
Quickstart Guide

22

Subaccount Engagement Tracking

The Engagement Tracking feature allows you to detect how your email recipients are
interacting with messages sent to them; specifically, if they are opening the message,
clicking on links within the message, or if the recipient has requested to be unsubscribed
from the messages they are receiving.

To use the Engagement Tracking feature, you must configure one or more Tracking
Domains. Tracking Domains are used to label the links and images in your email
messages, allowing the domains in the URL to match your own domain while still
allowing SocketLabs to track engagement.

Setup

Prior to setting up a Tracking Domain, a CNAME record must be established with your
DNS service provider. This CNAME must point a subdomain to tracking.socketlabs.com.
NOTE: You can re-use the CNAME record created for engagement tracking to set up your
engagement tracking domain.

Endpoint

https://api.socketlabs.com/subaccount/:subaccountId/dkim

https://help.socketlabs.com/docs/engagement-tracking

Complex Sender API
Quickstart Guide

23

Path Variables

• subaccountId (number, required)

Attributes

Subaccount Engagement Tracking

Property Name Data Type Details

domain string Domain or subdomain you want to set up for
engagement tracking

opensEnabled boolean

clicksEnabled boolean

unsubscribesEnabled boolean

automaticTrackingEnabled boolean

googleAnalyticsEnabled boolean

isDefault boolean

Complex Sender API
Quickstart Guide

24

Example Request

Subaccount Engagement Tracking

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount/:subaccountID/tracking””);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 domain”: “example.com”,

 “opensEnabled”: ”false”,

 “clicksEnabled”: ”false”,

 “unsubscribesEnabled”: ”false”,

 “automaticTrackingEnabled”: ”true”,

 “googleAnalyticsEnabled”: ”true”,

 “isDefault”: ”false”,

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

25

Subaccount Engagement Tracking

{

 “data”: {

 “Domain”: “tracking.example.com”

 “opensEnabled”: “true”,

 “clicksEnabled”: “true”,

 “automaticTrackingEnabled”: “true”,

 “gogleAnalyticsEnabled”: “true”,

 “encryptedTrackingStatus”: “Active”,

 “createdOn”: “1901-01-01T01:01:01.000Z”,

 “updatedOn”: “1901-01-01T01:01:01.000Z”

 }

}

Example Response

Ready to send mail? You have some options. First, let’s move on to our Injection API.

Complex Sender API
Quickstart Guide

26

The injection API lets you send email. Each endpoint can send an email to a single
recipient or thousands. SocketLabs generates and sends the messages using the options
you’ve defined in the emailMessage object.

Create an Injection API Key
API calls to the Injection API are authenticated using the API key that you generated.
Authenticate your calls to the Injection API using the Authorization header with
the Bearer authentication scheme.

Endpoint

Path Variables

• subaccountId (number, required)

Example Request

https://api.socketlabs.com/v2/subaccount/:subaccountId/credentials/in-
jection-api

Injection API

Complex Sender API
Quickstart Guide

27

Example Request

Example Response

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/subaccount/credentials/injection-api

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

{

 “data”: {

 “serverId”: 12345,

 “apiKey”: “xyzabc1233456”,

 “gateway”: “https://inject-cx.socketlabs.com/api/v2/email”,

 }

}

Injection API

Complex Sender API
Quickstart Guide

28

Available Code Libraries
To make it easy to get started with the Injection API, we provide client libraries in several
different programming languages. These libraries provide you with a quick start to start
using our injection API in your chosen language.

We also maintain GitHub repositories for each of the client libraries. These repositories
contain the full source code for the library, as well as detailed examples for many
different use cases. We encourage you to take a look at these examples when getting
started.

Injection API

Complex Sender API
Quickstart Guide

29

If you do not want to use one of our prebuilt libraries, the easiest process for sending
mail with the injection API is to:

1. Create a new Injection API Key
2. Create Email Message Object
3. Build and Add the Recipient Array to the Message Object
4. (Optional) Build and Add Custom Headers
5. (Optional) Build and Add Merge Data
6. Send with the Injection API

Create Email Message Object
The email message object includes options for different email body types, CC and BCC,
merge data, custom headers, and more to give you the most flexibility around your email
sending needs.

For example code, please refer to our library code examples.

Email Message Required Attributes

Property Name Data Type Details

To (array[Recipient]) An array of recipient EmailAddress/
FriendlyName value pairs representing the
recipients of an email message.

From Recipient The EmailAddress/FriendlyName value pair for
the sender of the message.

Subject String The subject line of the email message. 200
character limit.

Injection API

Complex Sender API
Quickstart Guide

30

Email Message Optional Attributes

Property Name Data Type Details

ReplyTo Recipient The EmailAddress/FriendlyName value pair
for the sender of the message

TextBody string Body of text that would be the content of the
mesage--this or HtmlBody are required

Htmlbody string Body of text that would be the content of the
message- this or TextBody are required

AmpBody string body portion

MergeData string Data storage for the inline merge feature

MessageId string SocketLabs header used to tag individual
messages

MailingId string SocketLabs header used to track batches of
messages

Charset string The charset name to be used when creating
the message. Default is UTF8.

CustomHeaders array[CustomHeader] An array of header field data stored in Name/
Value pairs.

CC array[Recipient] An array of recipient EmailAddress/
FriendlyName value pairs representing the
CC’d recipients of an email message.

Injection API

Complex Sender API
Quickstart Guide

31

Email Message Optional Attributes (cont.)

Property Name Data Type Details

BCC array[Recipient] An array of recipient EmailAddress/
FriendlyName value pairs representing the
BCC’d recipients of an email message.

Attachments array[Attachment] An array of attached content blobs, such as
images, documents, and other binary files.
This is not recommended for bulk sending, as
many receivers will either not accept the mail
or will mark it as spam.

Injection API

Complex Sender API
Quickstart Guide

32

If you do not want to use one of our prebuilt libraries, the easiest process for sending
mail with the injection API is to:

1. Create a new Injection API Key
2. Create Email Message Object
3. Build and Add the Recipient Array to the Message Object
4. (Optional) Build and Add Custom Headers
5. (Optional) Build and Add Merge Data
6. Send with the Injection API

Create Email Message Object
The email message object includes options for different email body types, CC and BCC,
merge data, custom headers, and more to give you the most flexibility around your email
sending needs.

For example code, please refer to our library code examples.

Email Message Required Attributes

Property Name Data Type Details

To (array[Recipient]) An array of recipient EmailAddress/
FriendlyName value pairs representing the
recipients of an email message.

From Recipient The EmailAddress/FriendlyName value pair for
the sender of the message.

Subject String The subject line of the email message. 200
character limit.

Injection API

Complex Sender API
Quickstart Guide

33

Recipient Array Attributes

(Optional) Build and Add Custom Headers

Property Name Data Type Details

emailAddress string An email address string such as foo@bar.com.
This is required.

friendlyName string An alias for an email address. This is optional.

Property Name Data Type Details

Name string The name of the header field to be added, such
as “Content-Type”

Value string The value of the header field to be added, such
as ‘application/json’

Injection API

Complex Sender API
Quickstart Guide

34

(Optional) Build and Add Merge Data

MergeValueData

Property Name Data Type Details

PerMessage array[array[MergeValueData]] A two dimensional (2D) array of
Field/Value pairs, used to define
merge field data for each message.
Variables can be freely named, with
the exception of a single reserved
word, ‘DeliveryAddress‘, which
defines the recipient of the current
message.

Global array[MergeValueData] A array of Field:Value pairs that will
be applied globally to all recipients.

Property Name Data Type Details

Field string Optional

Value string Optional

Injection API

Complex Sender API
Quickstart Guide

35

Send with the Injection API Example Request

var msg = new

{

 ServerId= “YOUR-SERVER-ID”,

 APIKey = “YOUR-API-KEY”,

 Messages = new object[]

 {

 new

 {

 To = new object[]

 {

 new { emailAddress = “recipient1@example.com” }

 }

 From = new object[]

 {

 new { emailAddress = “from@example.com” }

 }

 Subject = “Sending a Basic Message”,

 TextBody = “This is the Plain Text Body of my message.”,

 HtmlBody = “<html>This is the Html Body.</html>”

 }

 }

};

Injection API

Complex Sender API
Quickstart Guide

36

Send with the Injection API Example Request (cont.)

var content = new StringContent(JsonConvert.SerializeObject(msg),

Encoding.UTF8, “application/json”);

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://inject.socketlabs.com/api/v1/email”);

request.Headers.Add(“Authorization”, “Bearer <API Key>”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Injection API

Complex Sender API
Quickstart Guide

37

Example Success Response

Example Failure Response

Failure Codes
Please see [the API documentation] for more details regarding failure codes.

Want to set up SMTP? Our next section will assist.

{

 “ErrorCode”: “Success”,

 “MessageResults”: “null”,

 “TransactionReceipt”: “null”

}

{

 “data”: {

 “error”: [

 {

 “errorType”: “string”,

 “message”: “string”

 }

]

 }

Injection API

Complex Sender API
Quickstart Guide

38

The SocketLabs API can be used for getting and updating SMTP credentials for a
subaccount.

Endpoint

Path Variables
• subaccountId (number, required)

Get SMTP Credentials for a Subaccount

SMTP

https://api.socketlabs.com/v2/subaccount/:subaccountId/credentials/
smtp

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 “https://api.socketlabs.com/v2/servers/12345/credentials/smtp”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

39

Example Response

SMTP

{

 “data”: {

 “username”: “subaccount12345”,

 “password”: “xyzabc1233456”,

 “gateway”: “smtp.socketlabs.com”

 }

}

Complex Sender API
Quickstart Guide

40

Update SMTP Password for the Subaccount

Example Request

SMTP

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Put,

 “https://api.socketlabs.com/v2/servers/12345/credentials/smtp”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var content = new StringContent(@”{

 ‘password’=’abcdefghijklmnop1234’

}”, null, “text/plain”);

request.Content = content;

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

41

Update SMTP Password for the Subaccount

Example Response

SMTP

{

 “data”: {

 “username”: “subaccount12345”,

 “password”: “xyzabc1233456”,

 “gateway”: “smtp.socketlabs.com”

 }

}

Complex Sender API
Quickstart Guide

42

The Event Webhook provides the ability to subscribe to automatically generated HTTP
POST event notifications, which can be consumed by your own applications. Notifications
are generated for SMTP events and recipient engagement events. This webhook makes it
easy to receive real-time notification of these events and send the data back to your own
platform.

Events

Account Level Event Webhook

Property Name Details

Queued The mail has been injected and has been accepted for
delivery.

Sent SocketLabs sent the email and it was accepted by the
recipient email server.

Failed SocketLabs could not deliver the email to the recipient
email server.

Deferred The recipient’s mail server has temporarily refused
delivery of a message

Complaint The email recipient clicked to report “this is spam”
within their email client.

Click The email recipient clicked on a link in the email.
Click tracking must be enabled and the CNAME
record for the engagement tracking domain must
point to tracking.socketlabs.com.

Open The email recipient opened the email.

Complex Sender API
Quickstart Guide

43

A note on Asynchronous Bounces:

The way an asynchronous bounce works is that a receiving server will accept an email
and will send a bounce later, sometimes days later. Because of this, in the case of an
asynchronous bounce, the webhooks will show a delivered event and will then show a
failure when the bounce is received.

Authentication and Access

1. Write and deploy a secure (HTTPS) endpoint that can process and respond to
notifications. The URL of this endpoint is required to validate and enable this feature.

2. Either:
1. Log into the SocketLabs platform and choose “Event Webhook” under

“Configuration”, ensuring you are in the account overview and are NOT in a
subaccount. Add a webhook to get the secret key. Your endpoint must respond
with this secret key to validate.

2. Generate the secret key programmatically:

Account Level Event Webhook

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Post,

 ““https://api.socketlabs.com/v2/event-webhook/generate-secret-key”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

44

Error Handling and Rate Limiting

Once your endpoint is configured properly, there is no hard limit to the number of
notifications you can receive. If an endpoint is temporarily unavailable due to a system
outage on our end, your end, or somewhere between — all notifications will be queued
up for another delivery attempt in exactly the same way as email deferral works.
Notification API messages will be not be permanently failed and lost unless no contact
can be made for at least four days.

In the case where your endpoint becomes unresponsive for long periods of time, we may
disable the notification feature on your account to prevent generating large numbers of
notifications which cannot be delivered.

Endpoint Implementation

To use webhooks, users must write a handler that can process and respond to
notification messages via HTTP POST. This handler must be located at a public-facing URL
and must be validated by the SocketLabs platform before the URL can be activated.

To validate, the handler must support the following functionality:

- Accepting HTTP POST messages
- Recognize the Secret Key field to confirm that SocketLabs is the sender of the HTTP
POST message
- Respond to official notification messages with `200 OK` HTTP Response.

Account Level Event Webhook

Complex Sender API
Quickstart Guide

45

Endpoint Implementation
HTTPS communication is required on your endpoint. Using unencrypted HTTP can pose
a number of security risks. By the nature of the data being transmitted, Event Webhook-
related calls made to your endpoint contain your SocketLabs subaccount ID and Secret
Key, as well as PII (Personally Identifiable Information) belonging to end-users, such as
email address and IP address. Insecure transfer of such data over HTTP may pose data
security risks.

Implementation Notes

If the Secret Key does not match in a notification message, your application should
return a 401 error response.

All new endpoints will be in the JSON (`application/json`) data format.

Endpoint Validation

Once a handler application is installed and configured at a URL, this URL should be
entered into the ‘Endpoint URL’ field in the SocketLabs platform before using the Validate
button.

Validation Failures

Likely reasons for this validation to fail include:
• The endpoint is unreachable by SocketLabs, perhaps due to being behind a firewall.
• The handler is not accepting HTTP POST messages.
• The handler is not responding to notification messages with a `200` HTTP response.

Account Level Event Webhook

Complex Sender API
Quickstart Guide

46

Validation Failures
We recommend checking network security settings as well as examining the POST and
POST Response data in the handler if the Endpoint URL validation initially fails.

When testing your handler, you can use the configuration page in the SocketLabs
platform to send test notifications.

If your endpoint resides behind a firewall, you may need to allow SocketLabs’
infrastructure to access your network to receive notifications at your endpoint. Event
Webhooks can send notifications from multiple pieces of our infrastructure. It is
therefore recommended that you allow our entire outbound IP range, 142.0.176.0/20.

Endpoint Testing

Once you have deployed and validated your endpoint, you can use the “Event Tester”
feature in the SocketLabs platform to send sample notifications to your endpoint for
testing. Select the type of sample notification to generate from the dropdown, then click
the “Test” button. This will generate and send a notification to your endpoint. We will also
generate a preview of what the body of the notification will look like in your preferred
data format.

Once you send a test notification, an indicator will pop up showing the HTTP response
code that we received from your endpoint as well as whether the notification was
accepted.

Account Level Event Webhook

Complex Sender API
Quickstart Guide

47

Endpoint

Example Request: Sent Messages

Account Level Event Webhook

https://api.socketlabs.com/v2/event-webhook/:webhookID

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Get,

 “https://api.socketlabs.com/v2/event-webhook/:webhookId/per-

form-test?type=Sent”);

request.Headers.Add(“Authorization”, “Bearer <token>”);

var response = await client.SendAsync(request);

response.EnsureSuccessStatusCode();

response.EnsureSuccessStatusCode();

Console.WriteLine(await response.Content.ReadAsStringAsync());

Complex Sender API
Quickstart Guide

48

Example Response: Sent Messages

For more code examples and to dig into our subaccount level event webhook, see our
Event Webhook documentation.

Account Level Event Webhook

“data”: {

 “Type”: “Delivered”,

 “Response”: “Sample Response”,

 “LocalIp”: “:01”,

 “RemoteMta”: “Sample RemoteMTA”,

 “DateTime”: “2022-09-07T17:49:08.8139901Z”,

 “MailingId”: “SLNL-0-9999999-9999999”,

 “MessageId”: “SampleMessageId”,

 “Address”: “email@example.com”,

 “ServerId”: :subaccountID,

 “SecretKey”: “ASecretKeyGoesHere!”,

 “Data”: {

 “Meta”: {

 “Key”: “x-mycustommetadata”,

 “Value”: “I am custom metadata”

 },

 “Tags”: [

 “Sample Tag”,

 “Sample Message”

]

 }

 }

}

https://docs.socketlabs.com/#5a2b4eae-712b-492f-bde6-6678092c6c9f

Complex Sender API
Quickstart Guide

Thanks for taking the time to read through our Complex Sender Quickstart Guide!
This should get you up and ready to go with ease.

For more assistance, please see:
• Our Developer hub
• API Documentation

Thank you and Resources

https://docs.socketlabs.com

